
DI		VAN UNIVERSITY	Exam.		Back	
		FENGINEERING	Level	BE	Full Marks	80
Exan		Control Division	and the second s	BEI, BEX, BCT	Pass Marks	32
	2079	Ashwin	Year / Part	II / II	Time	3 hrs.
		Subject: - Dis	crete Structure	(CT 551)		
✓ Alle✓ The	figures in th	required to give their a stions. he margin indicate <u>Ful</u> data if necessary.		vn words as far as	practicable.	
early	", and "If	f inferences, show that program", "If you do n I go to sleep early, th o not finish writing the	oot send me an e-n nen I will wake	nail message, then	I will go to slee	n
2. Use 1 1 + 3 State	mathematica + 6 + 10 +	l induction to prove that + [n (n + 1)] / 2 = Contrapositive and Inves	= [n(n+1)(n+1)]	2)]/6 for all no	sitive integers r	n. I [5
3. Prove Table	ed that √2 is a au methods?	an irrational by giving a	proof by contradi	ction. What are the	e significance o	
transi	tion table an	ate Automata that accep gn should include the d the transition diagrar w starts and ends with c	proper definition n. Give regular e	n of the finite-sta xpression for follo	ate automation	1
Const below define G = {	ruct a Non-d and convert d as: N, T, P, S}, nd S is the st (S, A} a, b}	leterministic Finite Aut in to the Deterministic where N is non-termina arting symbol.	omata equivalent Finite Automata	to the regular gra . Here the regular	grammar G is	
	Ab, aaAb (empty sym					

Find all the solutions of the recurrence relation $a_n = 2a_{n-1} + a_{n-2} + 2^n + 1$ with initial conditions $a_1 = 7$ and $a_2 = 19$.

Using Dijkastra's Shortest Path Algorithm to find the shortest path from A to Z in the following weighted graph. Also make highlight the shortest path from source to destination (A-Z).

From that an undirected graph has even number of vertices of odd degree. Draw cycle with C_{5} and 3-Dimensional Hypercube (Q₃) and write their chromatic numbers. [2+6]

7

Deferentiate between Hamiltonian and Euler Circuit with suitable examples. Define planar [4+2+2]

short notes about following topics:

t the rithm

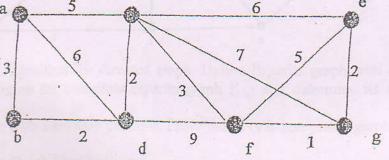
ng each

erits -6+21

efflow nd . -5+2] for -3+2]. fiscuss -5]

-8]

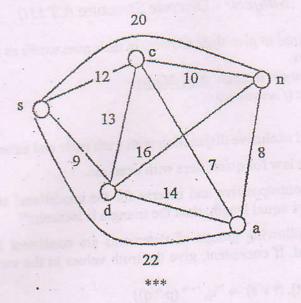
sch.


2.5

[8]

[8]

[2×4]


	r			-
TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING	Exam.	BE	Back Full Marks	80
Examination Control Division	Programme	BEX, BCT	Pass Marks	32
2079 Jestha	Year / Part	П/П	Time	3 hrs.
Subject: - Disci	rate Structura	(CT 551)		2
Subject: - Disci	ele suuciule	(CI JJI)		
 ✓ Candidates are required to give their ans ✓ Attempt <u>All</u> questions. ✓ The figures in the margin indicate <u>Full</u> ✓ Assume suitable data if necessary. 		wn words as far	as practicable.	
1. Explain inclusive and exclusive disjunct	ion with truth ta	able and exame	les.	[6]
 Explain De Morgan's law for quantifiers 			oralde theil w.	[4]
3. State the converse, contrapositive and i			tement "if any	
sides of a triangle have equal length, the			content it any	[3]
 4. Check whether the following groups o using tableaux method. If consistent, give system is consistent. Φ = {p→ (r^t), (t v s) → ¬q, ¬¬ 	ve the truth val			
5. Use mathematical induction to prove that	$t n < 2^n$ for all p	ositive integer	s n.	[5]
5. Define regular expression with example.	Design a DFA	that accepts fol	llowing languag	ge
$L = \{w \mid w \text{ is a binary string such that } w$	has both 01 and	d 10 as substrir	1g}	1010
Check your design for 10011 and 1101.	N. D.	1.1. 51.1. 6		[2+6]
 Define Regular grammar. Construct a following grammar and convert it into its G = (N, T, P, S) where N = set of non-terminals = {S, A, B} T = set of terminals = {a, b} P = productions = {S → aA bB, A → a S = starting non-terminal 	equivalent Det			
1 Find solution of following recurrence rela				[8]
$a_n = 2a_{n-1} - a_{n-2} + 2^n$ for $n \ge 2$ with $a_0 =$	1 and $a_1 = 2$			
S What is a bipartite graph? Is C ₆ bipartite?				[2+2]
D. Explain matrix representations of graph w	vith examples.			[6]
Use Dijkstra's algorithm to find the length weighted graph displayed below.	ı of shortest pat	h between vert	ices a and g in	the [8]
a Q C	6		ė	

12. How does a tree differ from graph? Define balanced tree with example.

;

 Define spanning tree with example. Use Prim's algorithm to find minimum spanning tree of following graph. [2+8]

to sail to the state manifest we will be a second second

[4]

Candidates
 Attempt All

Examinatio

- " The figures
- Assume suit
- Use rules of bird or a hu
 Write the in
- will have o integer, the
- Define cons set:
- $\phi = \{ (P \land Q) \\ 4. Given a Lat$ design a Fi
- proper defin 5. Consider th G=(N,T,P,o
 - Set of Non-Set of Term Set of produ and starting Construction regularygram
- Find all the conditions: (Use Dijktra) graphs below

 - State Hands example, Di maniher, Define spant Write short t Preadth

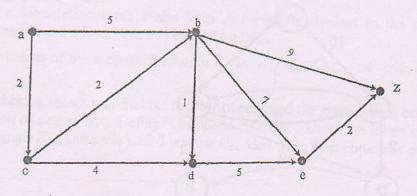
TRIBHUVAN UNIVERSITY	Exam.	1 " I	Regular : 6	
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80
Examination Control Division	Programme	BEI, BEX, BCT	Pass Marks	32
2078 Chaitra	Year / Part	П/П	Time	3 hrs.

	Subject: - Discrete Structure (CT 551)	
	Candidates are required to give their answers in their own words as far as practicable. Attempt <u>All</u> questions. The figures in the margin indicate <u>Full Marks</u> . Assume suitable data if necessary.	
1. 2. 3.	Use rules of inference to show that the hypothesis "No humans can fly.", "Tweety is a bird or a human.", "Tweety can fly" implies the conclusion "Tweety is a bird". Write the inverse, covers and contrapositive of the statement" If Covid Spreads then we will have online classes". Use a mathematical induction to prove, if n is non-negative integer, then (n^5-n) is divisible by 5. Define consistency and Completeness of the Logical System. Draw Tableau for formula set:	[8]
	$\phi = \{ (P \land Q) \lor R, P \to \neg Q, \neg P \}$	[2+6]
4	Given a Language $L = \{ W \in \{a,b\} \times W \text{ ends with 'ba'} \}$. Write a regular expression and design a Finite state automata that accepts the language L. Your design should include	
51	proper definition of finite- state automation, transition table and transition diagram. Consider the regular grammar	[2+6] [4+4]
	$G=(N,T,P,\sigma) \text{ where,}$ Set of Non-Terminals, $N = \{\sigma,A,B\}$ Set of Terminals, $T = \{a,b\}$	
	Set of productions, $P = \{\sigma \rightarrow bB, \sigma \rightarrow bA, A \rightarrow a\sigma, B \rightarrow bB, B \rightarrow a, B \rightarrow \lambda\}$	

and starting symbol σ .

[4]

8]


Construction a Non- Deterministic Finite State Automata equivalent to the above given regular grammar and convert this into DFA.

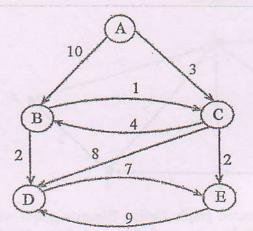
[8]

[8]

[4+4]

- Find all the solution of the recurrence relation: $a_n=6_{n-1}-8_{n-2}+3^n$, where the initial conditions: $a_0=4$ and $a_1=10$.
- Use Dijktra's algorithm to find the length of shortest path between vertices 'a' and 'z' in the graphs below. Also highlight the shortest path.

State Handshaking Algorithm for directed graph. Define Biparite graph with a suitable sample. Draw a figure for complete biparite graph $K_{3,5}$ and determine its chromatic maker. [2+2+2+2] Define spanning tree with a suitable example. Prove that $K_{3,3}$ is non-planar graph. [3+5]


Define spanning tree with a suitable example. Prove that $K_{3,3}$ is non-planar graph. Write short notes on:

Breadth First and Depth First Traversal

TRIBHUVAN UNIVERSITY	Exam.		Back	
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80
Examination Control Division	Programme	BEI, BEX, BCT	Pass Marks	32
2078 Poush	Year / Part	II / II	Time	: 3 hrs.

Subject: - Discrete Structure (CT 551)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- The figures in the margin indicate <u>Full Marks</u>.
- Assume suitable data if necessary.
- Show that the premises. "If the Council approves the funds, then New Atlantic will get the Olympic Games. If New Atlantic gets the Olympic Games, then New Atlantic will build a new stadium. New Atlantic does not build a new stadium. Therefore, the Council does not approve the funds, or the Olympic Games are canceled."
- 2. Use mathematical induction to prove that $2^n > n^2$ for n > 4.
- Define predicates. State the converse, contrapositive, and inverse of "I come to class whenever there is going to be a quiz." Prove that if n is a positive integer, then n is even if and only if 7n + 4 is even. [1+3+4]
- Design a DFA that accepts a language L(M) = {w ∈{0, 1} *: all bit strings that contain the string 101.} Your design should include proper definition of DFA, transition table and transition diagram.
- Write the regular expression for set of strings of a's and b's ending with the string either ab or ba.}. Construct a finite-state machine that gives an output of 1 if and only if last three bits received are all 1s.
- 6. Find all solutions of the recurrence relation $a_n = 2a_{n-1} + 2n^2$ with initial condition $a_1 = 4$. [8]
- 7. Let G be a connected planar simple graph with e edges and v vertices. Let r be the number of regions in a planar representation of G. Then prove that r = e v + 2.
- 8. Are C3 and C6 bipartite? Justify your answer. Explain about Incidence Matrixes technique for graph representation with figure.
- 9. Use Dijkstra's algorithm to find the length of a shortest path from the vertex "A" to other vertices in the graph below.

- 10. What is Huffman coding? Why do you need it? Show that K_n has Hamilton circuit whenever $n \ge 3$. What is the chromatic number of C_n for $n \ge 3$? [2+3+3]
- 11. Explain S-T cut theorem with example.

[4]

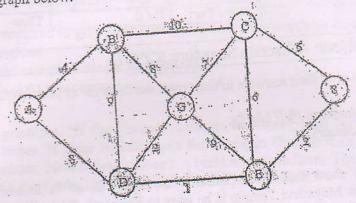
[8]

[8]

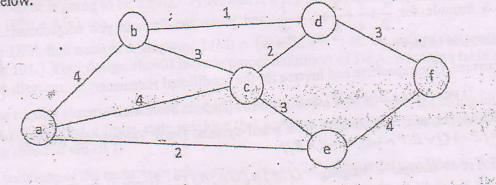
[8]

[4]

[4+4]


[8]

Se


1 0

INSTITUTE OF ENGINEERING	Exam. Level	BE	Back	80
Examination Control Division	Programme	BEX, BCT	Pass Marks	32
2078 Baishakh	Year/Part	П/П	Time	3 hrs:
· · ·			-	<u></u>
Subject: - Disci	rete Structure	(CT 551)		
 Candidates are required to give their ans Attempt <u>All</u> questions. The figures in the margin indicate <u>Full M</u> Assume suitable data if necessary. Use rules of inference to show that the Pokhara", "He will not visit Mayadevi T Mayadevi Temple only if he visits Sa paragliding." "He will not do paragliding 	<u>Marks</u> , ne hypothesis 'emple if he go urangkot " "If	"Buddha will g es to Pokhara", he visit Saran	to Lumbini o "He will not visi	t
paragliding.", "He will not do paragliding Conjecture a formula for $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$				
using mathematical induction.	2^n		y su conjoinated	and marked
			. ·	[2+6]
a) State Converse, Contrapositive and Inv				[3+2]
"I won't get a degree if I do	o not pass in Di	screte Structure,		•
b) Define soundness and completeness of sets: $\tilde{\Phi} = \{P \rightarrow Q \lor R, P \land \neg Q, \neg (\neg P \land \neg Q)\}$	of a proof system $\{R\}$	tem. Draw Tabl	leau for formula	. [3]
Design a DFA that accepts a language	$L(M) = \{ w \in M \in M \in M \}$	{0,1}*: Every	0 in w has 1	
intendately to its right {. Your design	should inclu	de proper defi	nition_of_DFA.	Mar Same
transition table and transition diagram.				[8]
Consider the regular grammar, $G=(N,T,P,\sigma)$ Set of Non-terminals, $N=\{\sigma, A, B\}$) where			[4+4]
Set of Terminals, T={a, b}		•		
Set of productions, $P=\{\sigma \rightarrow aA, \sigma \rightarrow aB, \sigma \rightarrow a$	ɔ→bA, A→bA	$, A \rightarrow \lambda, B \rightarrow b \}$		• •
Construct a Non-deterministic Finite Stat	e Automata e alent DFA,	quivalent to th	e above given	
Find all solutions of the recurrence relation and $a_2=5$.		2+12a _{n-3} +n4 ⁿ wi	th a ₀ =-2, a ₁ =0,	
Use handshaking theorem to find the number ertices each of degree five. Define "Chrom inpartitate graph K _{3,4} and cycle with 5 vertice	atte Alumbar	Dictory the firm	C 1.	[8]

8. Use Dijkstra's algorithm to find the length of a shortest path from the vertex "A" to other vertices in the graph below.

 Define Spanning Tree with example. Find the Minimum Spanning Tree from the graph given below.

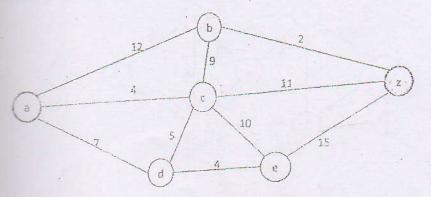
- 10. Write short notes on:
 - a) Hamilton graph
 - b) Max flow and Min cut theorem
 - c) Planar Graph

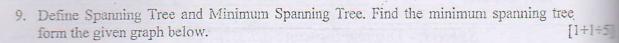
1

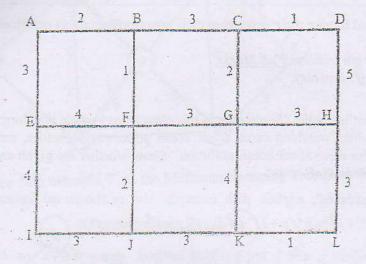
[8]

[3×3

	TRIBHUVAN UNIVERSITY
ENSTI	TUTE OF ENGINEERING
Tramin	ation Control Division
	2077 Chaitra


Exam.	这些资源 。在1951	contra la la	
Level	BE	Full Marks	80
Programme	BEI, BEX, BCT	Pass Marks	32
Year / Part	II/II ·	Time	3 hrs.


[8]


いたの

Subject: - Discrete Structure (CT 551) Candidates are required to give their answers in their own words as far as practicable. Attempt All questions. The figures in the margin indicate Full Marks. Assume suitable data if necessary. Define Valid Argument in Logic. "Somebody in this class enjoys whale watching. Every person who enjoys whale watching cares about ocean pollution. Therefore, there is a person in this class who cares about ocean pollution." Show whether the given argument is valid or not using rules of inference. [2+6] That are "Counterexamples", explain with example. Use mathematical induction to $1^{3} + 2^{3} + 3^{3} + ... + n^{3} = n^{2}(n+1)^{4}/4$ for all positive integer n. [2+6] The that if n=ab, where a and b are positive integers, then $a \le \sqrt{n}$ or $b \le \sqrt{n}$. Determine whether the given expression is consistent or inconsistent using method of $\mathsf{Tableaux}: (P \land Q \to R) \land (\neg P \to S) \land Q \land \neg R \land \neg S$ [3+5] Define Finite state machine with example. Design a Finite State Automata that accepts modesely those strings over {a,b} that does not end with the substring "abb". Your design model include the proper definition of the finite-state automation, transition table and the mention diagram. [2+6] Consider the regular grammar defined by $T=\{a,b\}$, $N=\{S, A\}$ with productions $S \rightarrow bS$, $\rightarrow A \rightarrow bA$, $A \rightarrow b$ and starting symbol S. [4+4] Construct a NDF A equivalen to the above given regular grammar. Convert the NDF A into equivalent DFA. Find all solutions of recurrence relation: $a_n = 4a_{n-1} - 4a_{n-2} + 3^n$. Also, find the solution with $a_0=1$ and $a_1=2$. [8]

- **Example and** describe briefly the chromatic number of complete bipartitie graph $K_{3,4}$ and C_5 . Define Planar graph and show that K_5 is not a planar graph. [4+4]
- Distra's algorithm to find the length of shortest path form vertex 'a' to vertex 'z' in weighted graph. Also highlight the shortest path in the graph.

[3×3]

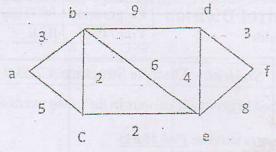
10. Write short notes on:

a) Max flow and Min cut theorem

b) Cut edges and Cut vertices

c) Euler graph.

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division 2076 Baisakh


Exam.		Bidic	
Level	BE	Full Marks	80
Programme	BCT, BEX	Pass Marks	32
Year / Part	II/II	Time	3 hrs.

	Subject: - Discrete Structure (CT 551)	_
< < < < <		
1.	a) "A student in this class has not read the book" and "Everyone in this class passed the first exam" implies that conclusion "someone who passed the first exam has not read the book."	[5]
	 b) Let Q(x,y) denote (x+y=0). What is truth values of quantification ∃y∀xQ(x,y) and ∀x∃yQ(x,y). 	[3]
	Show that $\{A \land C, (\neg A \lor B) \land (\neg B \lor \neg C)\}$ are unsatisfiability of the given set using method of tableaux. Prove that " If n is an integer and $3n+2$ is odd, then n is odd."	[2+2]
	Use mathematical induction to prove that $7^{n+2}+8^{2n+1}$ is divisible by 57 for every non negative integer n.	[8]
	Design a FSA transition diagram that accepts the given set of string over {a,b},i) which starts with ab and ends with baa.ii) where every b is followed by a.	[4+4]
5.	Design a Grammar to generate Palindrome for Binary Number. Consider the right linear Grammar N={N, T, P, S}, where N=set of non-terminal = {A, B, S}, T=Set of Terminal={a, b, c}, and P consists of the following rules: {S \rightarrow abA/bbB/a, A \rightarrow aA/bB/b,	
	$B \rightarrow baB/aaaA$. Construct the NDFA equivalent to the given grammar.	[4+4]
6.	Find all the solutions of recurrence relation: $a_n=3a_{n-1}+4a_{n-2}+3^n$ with initial conditions $a_0=1$ and $a_1=2$.	[8]
	Are C ₃ and C ₆ bipartite, explain with figures. If G is a connected planar simple graph with E edges and V vertices, where V \geq 3, then prove that E \leq 3V-6.	[4+4]
8.	Define Binary tree, M-ary tree and Spanning tree. Find the minimal spanning tree from the graph given below.	[3+5]

C

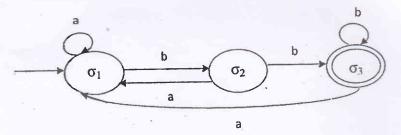
6

9. Use Dijkstra's Algorithm to find the length of shortest path from vertex a to vertex f in the following weighted graph. Also highlight the shortest path/paths in graph.

14-2

10. Write short notes on:

- a) Regular Graph with example.b) Max Flow and Min Cut Theorem

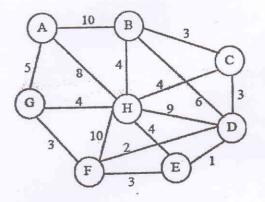

Regular 12 title total TRIBHUVAN UNIVERSITY Exam. 27 **Full Marks** 80 BE Level INSTITUTE OF ENGINEERING Pass Marks 32 **Examination Control Division** Programme BCT/ BEX 3 hrs. II / II Time Year / Part 2075 Bhadra

Subject: - Discrete Structure (CT551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. Define the **terms** Tautology, Contradiction and Logical Equivalences. Show that $\neg A \rightarrow \neg B$ and $B \rightarrow A$ are Logically Equivalent. State the converse, contrapositive and inverse of the statement, "A positive integer is prime only if it has no divisors other than 1 and itself". [3+2+3]
- Show that the premises "There is someone in this class who has been to Pokhara. Everyone who goes to Pokhara visit the Sarankot. Therefore, someone in this class has visited the Sarankot." [8]
- 3. Use mathematical induction to verify:

$$1^{2} - 2^{2} + 3^{2} - 4^{2} + \dots + (-1)^{(n+1)}n^{2} = (-1)^{n+1}n(n+1)/2$$

- 4. a) Stafe the closure properties of Regular Language.
 - b) Let L be the set of strings accepted by the FSA shown below. Now construct a FSA that accepts the strings $L^{R} = \{X_{n}, \dots, X_{1} | X_{1}, \dots, X_{n} \in L\}$


- 5. i) Find the language L(G) overs, {a,b,c} generated by the grammer, G with production:
 S→aSb, aS→Aa, Aab→c.
 - ii) Write a grammer that generates the string over {a,b} not ending with ab.
- 6. Find the solution of recurrence relation of a_n = 5a_{n-1} 6a_{n-2} + 3n + 2ⁿ with initial condition a₀ = 0, a₁ = 1, and a₂ = 2.
- Prove the theorem, "An undirected graph has an even number of vertices of odd degree." Describe complete graph and bipartite graph. [3+5]
- 8. What is chromatic number of $K_5, K_{m,n}$ and C_p for $P \ge 3$, explain with suitable figure. How Euler graph is different from Hamilton graph, explain? [5+3]

[8]

[3]

[5]

9. Use Dijkstra's algorithm to find the length of a shortest path from the vertices A to other in the graph below.

- 10. Write short notes on:
 - i) Max Flow and Min cut Theroem
 - ii) Plannar Graph

.

[4+4]

47 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING **Examination Control Division** 2074 Bhadra

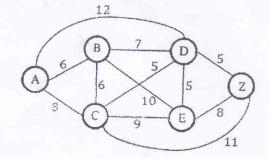
Exam.		Regular	Contraction of
Level	BE	Full Marks	80
Programme	BEX, BCT	Pass Marks	32
Year / Part	11 / 11	Time	3 hrs

Subject: - Discrete Structure (CT551)

- Candidates are required to give their answers in their own words as far as practicable.
- Attempt All questions.
- The figures in the margin indicate Full Marks.
- Assume suitable data if necessary.

1. Use rules of inference to show that the hypothesis "If my cheque book is in office, then I have paid my telephone bill", "I was looking for phone bill at breakfast of I was looking for phone bill in my office", "If I was looking for phone bill at breakfast then my cheque book is on breakfast table", "If I was looking for phone bill in my office then my cheque book is in my office", "I have not paid my phone bill" imply the conclusion "My cheque book is on my breakfast table."

2. Write the inverse, converse and contrapositive of the statement "I visit temple only if it's Saturday". Prove that if n is a positive integer, then n is even if and only if 7n + 4 is even. [3+5]


3. Define tableau method with its significances? Use mathematical induction to prove the formula for the sum of a finite number of terms of Geometric Progression: [4+4]

 $\sum_{j=0}^{n} ar^{j} = a + ar + ar^{2} + \dots + ar^{k} = \frac{ar^{n+1} - a}{r-1},$ when $r \neq 1$, where n is non-negative integer.

4. Given a language, $L = \{w \in \{a, b\}^* : w \text{ contain at-least three 'b' s}\}$

Write the regular expression for L and design a Finite State Automata that accepts the Language L. Your design should include the proper definition of the finite-state automation, transition table and the transition diagram. [2+6]

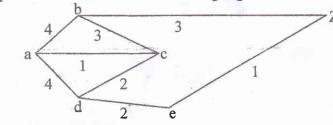
- 5. Consider the regular grammar $G=\{N, T, P, \sigma\}$ where N = set of non-terminal symbols = $\{\sigma, C\}, T = set of terminal symbols = \{a, b\}, P is the set of production rules = <math>\{\sigma \rightarrow b\sigma, \sigma\}$ $\sigma \rightarrow aC, C \rightarrow bC, C \rightarrow b$ and σ being the starting symbol. Construct a non-deterministic finite state automaton equivalent to the given regular grammar. Use this non-deterministic finite state automaton to generate equivalent deterministic finite state automaton. [3+5]
- 6. State linear homogeneous and non-homogeneous recurrence relation with examples. Find all solutions of the recurrence relation: $a_n = 2a_{n-1} + 2n^2$ with initial condition $a_1 = 4$. [3+5]
- 7. Use Dijkstra's algorithm to find the length of shortest path from vertex A to vertex Z in the following weighted graph. Also highlight the shortest path/paths in the graph:

[8]

8. State Handshaking Theorem for undirected graph. Define bipartite graph with suitable example. Draw the figure for Complete Bipartite Graph K_{3,4} and determine its chromatic number.

9. How does Hamiltonian circuit differ from Euler circuit? Define Planar and Regular
 10. Write shart in [4+2+2]

[4+4]


- 10. Write short notes on:
 - a) Tree and its applications
 - b) Max-flow Min-cut Theorem

47 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division 2073 Magh

Exam.	New Back (2066 & Later Batch)			
Level	BE	Full Marks	80	
Programme	BEX, BCT	Pass Marks	32	
Year / Part	Π/Π	Time	3 hrs.	

Subject: - Discrete Structure (CT551)

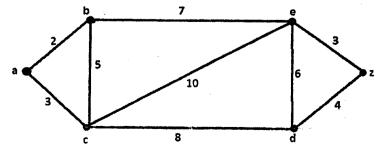
- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate *Full Marks*.
- ✓ Assume suitable data if necessary.
- 1. Hypothesis: "If today is Sunday then I will have a test in MFC and IT. If my IT teacher is sick then I will not have a test in IT. Today is Sunday and my IT teacher is sick." Conclusion: "I will have a test in MFC." Use rule of inference to prove it.
- 2. What do you mean by weak principle of mathematical induction? Prove that $5^n -1$ is divisible by 4 for all $n \ge 1$ using Induction method. [3+5]
- 3. What are the central ideas of formal and informal proofs? Prove that $\sqrt{2}$ is irrational. [4+4]
- 4. Define Non-Deterministic Finite State Automata. Design a finite-state automation that accepts only those set of strings over {a,b} which ends with *aba*. Precisely, only those strings which end with *aba* should accepted and other strings over {a,b} should be rejected. Your design should include the proper definition of the finite-state automation, transition table and the transition diagram.
- 5. Consider the regular grammar $G = (N, T, P, \sigma)$ where N =set of non-terminal symbols = { σ , C}, T = set of terminal symbols = {a, b}, P is the set of production rules = { $a \rightarrow b\sigma$, $\sigma \rightarrow aC$, C $\rightarrow bC$, C $\rightarrow b$ } and σ being the starting symbol. Construct a non-deterministic finite state automaton equivalent to the given regular grammar. Use this non-deterministic finite state automaton to generate equivalent deterministic finite state automaton.
- 6. What do you understand by recurrence relation? Explain in brief. Setup a recurrence relation for the sequence representing the number of moves needed to solves Hanoi Tower puzzle.
- 7. Draw neat and clean graphs of: W_6 (a wheel with 6 peripheral vertices), K_6 (a complete graph with 6 vertices, Q_3 (a 3 dimensional hypercube) and $K_{2,5}$ (complete bipartite graph). Use graph coloring technique to color each of these graphs and state their respective chromatic numbers.
- 8. Find the shortest path from vertex a to vertex Z Highlight the shortest paths in the graph. [6+2]

- Explain the Euler circuit and Hamilton circuit with example. State the necessary and the sufficient conditions for them.
- 10. Write short notes on:
 - i) Spanning Trees
 - ii) Max-flow min-cut theorem

[3+5]

[8]

[2+6]


[4+4]

[4+4]

[4+4]

4 [*] TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING	Exam. Level	BE	Full Marks	80
Examination Control Division		BEX, BCT	Pasa Marks	32
2072 Ashwin	Year / Part	II / II	Time	3 hrs.
Subject: - Disc	crete Structur	e <i>(CT551)</i>		
 ✓ Candidates are required to give their an ✓ Attempt <u>All</u> questions. ✓ The figures in the margin indicate <u>Full</u> ✓ Assume suitable data if necessary. 		wn words as fa	ar as practicable	•
Using resolution principle, prove that have a test in Discrete Structure or Mic then I will not have a test in Mic Microprocessor teacher is sick." lead to Structure".	proprocessor". If croprocessor."	my Micropro and "Today i	cessor teacher is s Tuesday and	s sick 1 my
 2. Prove that √2 is irrational by giving a formula (T∨S) → ¬Q where ¬ denotes of variables and → is the symbol for im 	the negation of			
3. State the contrapositive and inverse of t I will stay at home". Using mathemati statement is true: 3+3*5+3*5 ² +3*5 ⁿ	ical induction te	chnique, prov	e that the follo	wing
4., Differentiate between a Finite State M Finite State Automata that accepts prec no. of a's. Your design should include t transition table and the transition diagra	cisely those strin the proper defin	g over {a,b} t	hat contains an	even
Subscription Consider the regular grammar $G =$ symbols = { σ , C}, T = set of termin rules = { $\sigma \rightarrow b\sigma$, $\sigma \rightarrow aC$, C $\rightarrow bC$, C $\rightarrow b$ } deterministic finite state automaton equidaterministic finite state automaton to automaton.	nal symbols = and σ being the uivalent to give	{a,b}, P is the starting symbol starting symbol symbol starting symbol s	te set of produ ool. Construct a nmar. Use this	non- non-
Find all the solutions of the recurrence $a_n = 5a_{n-1} - 6a_{n-2} + 2^n$ with initial cond		$1 a_1 = 4$		
7. Explain the Euler path and Euler circu and the sufficient conditions for Euler c			. State the nece	ssary [5+
8. Draw neat and clean graphs of: C ₇ (a cylindright vertices), Q ₃ (a 3 dimensional hypercuber coloring technique to color each of the numbers.	be) and K _{3,4} (co	mplete biparti	te graph). Use g	graph

_94 Use Dijkstra's algorithm to find the length of shortest path in the following weighted graph. Also highlight the shortest path/paths in the graph:

11

- 10. Write short notes on:
 - i) Maximum Flow Mincut Theorem
 - ii) Handshaking Theorem

[4+4]

47 TRIBHUVAN UNIVERSITY	Exam.	Regular / Back			
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80	
Examination Control Division	Programme	BEX, BCT	Pass Marks	32	
2071 Bhadra	Year / Part	11 / 11	Time	3 hrs.	
				**	

Subject: - Discrete Structure (CT551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate <u>Full Marks</u>.
- Assume suitable data if necessary.

V. Use resolution to show the hypothesis "It is note raining or Sita has her umbrella," "Sita does not have her umbrella or she does not get wet," and "It is raining or Sita does not get wet" imply that "Sita does not get wet."

2. Use mathematical induction to show that

$$/1^3 + 2^3 + \dots + n^3 = [n(n+1)/2]^2$$

whenever n is a positive integer.

3. State the converse, contrapositive and inverse for the conditional statement, "I go to the beach whenever it is a sunny summer day." [3]

4. Why is a tableau method important in propositional logic? Draw the tableau for the formula [2+3]

 $\Phi = (p \land \neg q) \rightarrow s$

Where \neg denotes the negation of a variable, \land denotes the conjunction of variables and \rightarrow denotes the implication.

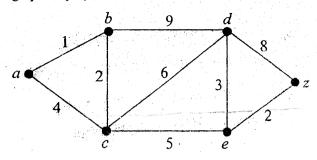
5. Differentiate between Finite State Machines and Finite State Automata. Design a Finite State Automata that accepts precisely those strings over {a, b} that contain an odd number of b's. Your design should include the proper definition of the finite-state automation, transition table and the transition diagram. [2+6]

6. Consider the regular grammar $G = (N, T, P, \sigma)$ where N = Set of Non-Terminals = $\{\sigma, A, B\}, T = Set$ of Terminals = $\{a, b\}$ with productions. [4+4]

 $\int \sigma \rightarrow aA, \sigma \rightarrow bB, A \rightarrow a, B \rightarrow a and starting symbol \sigma$.

Construct a Non-Deterministic Finite State Automata equivalent to the above given regular grammar and convert this into equivalent Deterministic Finite State Automata.

7. Find all solutions of the recurrence relation


 $a_n = 3a_{n-1} + 2^n$

with initial condition $a_0 = 5$.

[8]

[8]

8. Use Dijkstra's algorithm to find the length of the shortest path between the vertices a and z in the weighted graph displayed below.

9. Draw the figure for the complete graph with 6 vertices (This is usually denoted by K₆).
 Define the term graph coloring and the chromatic number of a graph coloring. What is the chromatic number of the complete graph K₆? [2+2+2+2]

10. Explain the Hamiltonian path and Hamiltonian circuit with the help of a diagram. State the necessary and sufficient conditions for Euler circuits and paths. How is Euler circuit different from the Hamiltonian circuit? [3+2+2]

11. Write short notes on:

a) Spanning tree
b) Cutsets and Cutvertices
c) Application of trees

[3+3+3]

37 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division 2070 Bhadra

Exam.			
Level	BE	Full Marks	80
Programme	BEX, BCT	Pass Marks	32
Year / Part	II / II	Time	3 hrs.

Subject: - Discrete Structure (CT551)

- \checkmark Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate *Full Marks*.
- ✓ Assume suitable data if necessary.
- 1. If P = F, Q = T, S = T, R = F, then find truth value of:

(8) a)
$$(S \to (P \land \overline{R}) \land ((P \to (R \lor Q)) \land S))$$

b) $((P \land \overline{Q}) \leftrightarrow (Q \land R)) \to (S \lor \overline{Q})$

- 2. Using rules of inferences, show that the hypothesis "It is not rainy today and its hotter
- than yesterday", "We will go for movie only if it is rainy", "If we do not go for movie, then we will go for shopping", and "If we go for shopping, then we will be home by sunset" lead to the conclusion "We will be home by sunset". You are required to show each steps and give reasons for those steps before you come to desired conclusion from the hypothesis.

3. Prove by Mathematical Induction: B

 $1.2.3 + 2.3.4 + 3.4.5 + \dots + n(n + 1)(n + 2) = n(n + 1)(n + 2)(n + 3)/4$

+4. Design a Finite State Machines (FSM) that performs binary serial addition. Define DFA

- and NDFA. Construct DFA that recognize the language "The set of bit brings that do not contain three consecutive 0's. Show only necessary figures and state diagrams. [3+2+3]
- (4)+5. Define and differentiate between context-sensitive, context free and regular grammars with suitable examples. Explain in short the role of regular expressions.
 [6+2]
- 6. What do you understand by recurrence relation? Explain in brief. Derive and solve the recurrence relation for Tower of Hanoi puzzle. [2+6]

4 ×7. Is K_{3,3} graph a planar graph? Explain it with suitable reasons. [4+4]
6 8. Define Regular and Bipartite graphs with suitable examples. [3+3]

- (2) 9. Define level and height of tree? What is full m-ary tree and balanced tree? [2+2]
- 6 10. State the handshaking theorem for the undirected graph and use it to prove the theorem that an undirected graph has an even number of vertices of odd degree.

11. Write down the short notes on the following:

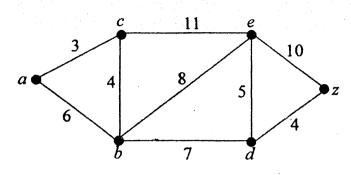
(6) a) Maximum Flow Mincut Theorem

b) Graph Coloring

[4+4]

[8]

[8]


[4+4]

IN	TRIBHUVAN UNIVERSITY	Exam.	New Back	(2066 & Later	Bate
	STITUTE OF ENGINEERING	Level	BE	Full Marks	80
Exan	nination Control Division	Programme	BEX, BCT	Pass Marks	32
	2070 Magh	Year / Part	II / II	Time	3 h
	Subject: - Disc	rete Structure	e (CT551)		
✓ At✓ Th	andidates are required to give their ans tempt <u>All</u> questions. he figures in the margin indicate <u>Full</u> sume suitable data if necessary.		wn words as fa	ar as practicable	2.
1.	Construct an argument using rul hypotheses "Randy works hard," a dull boy," and "If Randy is a d job" imply the conclusion "Randy	"If Randy wo dull boy, then	orks hard, the he will not	n he is	8]
2.	Use mathematical induction to sh $1^2 + 2^2 + \cdots + n^2 = n (n + 1) (2)$ whenever n is a positive integer.			[{	3]
3.	State the converse, contrapositive statement, "A positive integer is other than 1 and itself."			•	3]
4.	Define satisfiable and unsatisfiab the formula $\Phi = \neg((p \land q) \lor r)$ where \neg denotes the negation disjunction of variables and variables.	of a variab	ole, ∨ denot	es the	3 [•]]
5.	Define Finite State Machines. De accepts precisely those strings consecutive a's. Your design sho of the finite-state automaton, tra diagram.	over {a, b} ould include th	that containe proper def	n two inition	5]
6	Consider the regular grammar G Non-Terminals = { σ , A, B}, T= productions $\sigma \rightarrow a, \sigma \rightarrow bB, A \rightarrow bA, A \rightarrow aB,$ symbol σ . Construct a Non-Deterministic Fi the above given regular grammar Deterministic Finite State Automa	Set of Termination A→b, A→a, inite State Autor r and convert	inals = {a, b B→b and st omata equiva	} with tarting lent to	,

¥.,-

11

8. Use Dijkstra's algorithm to find the length of the shortest path between the vertices a and z in the weighted graph displayed below.

- 9. Draw the figure for the complete graph with 5 vertices (This is usually denoted by K_5). Define the term graph coloring and the chromatic number of a graph in graph coloring. What is the chromatic number of the complete graph K_5 .
- 10. Construct an influence graph for the board members of a company if the President can influence the Director of Research and Development, the Director of Marketing, and the Director of Operations; the Director of Research and Development can influence the Director of Operations; the Director of Marketing can influence the Director of Operations; and no one can influence, or be influenced by, the Chief Financial Officer.
- 11. How is Euler circuit different from the Hamiltonian circuit? Explain

12. Write short notes on

- a) Spanning tree and its applications
- b) Network Flows
- c) Regular graphs

[2+2+2+2]

[4]

[3]

[3+3+3:] /

a Martina . e.	37	TRIBHUVAN UN	IVERSITY	Exam.		Regular		
	· · · •	FUTE OF ENC		Level	BE	Full Marks	80	
	Examin	ation Cont	rol Division	Programme	BEX, BCT	Pass Marks	32	
enado inco		2068 Bhad	ra	Year / Part		Time	3 hrs.	н. 1944 - С.
			Cubicat.	Diagnoto Straig				
		· ·	and the second	Discrete Struc				• Shee
in e standerster	Candid	lates are requir	ed to give their an	swers in their o	wn words as fa	ir as practicable	, inter our state of the	فابتبنيك
		nt <u>All</u> questions tures in the mai	rgin indicate <u>Full</u>	Marks				
	✓ Assume	e suitable data	if necessary.	<u>111 ul ns</u> .				
	1) Using r	ules of inference	ces, show that the l	ypotheses "If yo	ou send me an	e-mail message,	then	
	I Will fi	inish writing th	e program," "If yo	u do not send m	e an e-mail me	essage, then I wi	ll go	
	conclus	ion "If I do no	f I go to sleep early ot finish writing th	y, then I will wa	ke up teeling r	effreshed" lead to	o the	
	You are	e required to sh	ow each steps and	give reasons for	those steps he	fore you come to	the	
	desired	conclusion from	m the hypotheses.	Bitte reasons for			(8)	
	2) Use ma	thematical indu	ction to prove that				(8)	
	$3+3\cdot 5$	$5 + 3 \cdot 5^2 + \dots$	$+3\cdot 5^{n}=3(5^{n+1}-$	1)/4		·	\ -/	
	whenev	er n is a nonneg	gative number.					
	3) Prove t	hat √2 is irrati	ional by giving a	proof by contra	adiction. Draw	the tableau for	the	
	formula	ι (TVS) → ¬Q v	where ¬ denotes the	e negation of a v	ariable, ∨ deno	tes the disjunction	on of	
			symbol for implica				5+3)	
	4) Design	a finite-state au	itomaton that accept	ots only those se	t of strings ove	er $\{a, b\}$ which s	starts	
	with ba	a. Precisely, or	nly those strings w	hich begin with	baa should b	e accepted and c	other	
	finite-st	ate automaton.	uld be rejected. Yo transition table and	ur design should	include the project in the project i		t the 2+3)	
•	the diffe	erent properties	sions and regular l of regular languag	anguages in det	all with suitable		4+4)	
			e recurrence relatio					
	$a_n = 2a_n$			11			(8)	
		tial condition a	I = 5.					
			m to find the length	of the shortest	nath between t	he vertices a and	zin	
	the weig	shted graph disp	played below.		puit como		(8)	
		-	Ь	5 0	1		·	
			4				•.	
					6			
		a 🖷	$\langle \cdot \cdot 1 $	8				
				2	Z			
			2		3			
				10 e				
	 Durant 41 	o figure for 1	-		•	and the second	4 ¹	
	oj Draw th (Thie ie	ie ingure for th susually denot	e complete bipartied by C_5). What	ite graph $K_{3,4}$ a	na the cycle g	the drawn com	nices niete	
	bipartite	e graph K_{34} and	the cycle graph C	is the chiomat		(2+2+		
	-			· · ·	in Allino it to m			
			theorem for the un s an even number of				2+4)	
		iort notes on: -		· · · ·				
		Eulerian graph		- 		(4+	3+3)	
		Hamiltonian gra	anh					
	b) I	nannnonan gra	apn					

37 TRIBHUVAN UNIVERSITY	Exam.	Regular (2066 & Later Batch)		
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80
Examination Control Divis	ion• Programme	BEX, BCT	Pass Marks	32
2069 Bhadra	Year / Part	П/П	Time	3 hrs.

Subject: - Discrete Structure (CT551)

 \checkmark Candidates are required to give their answers in their own words as far as practicable.

Attempt <u>All</u> questions.

1

- 2

4

✓ The figures in the margin indicate *Full Marks*.

✓ Assume suitable data if necessary.

Construct an argument using rules of inference to show that the hypotheses "If it does not rain or if it is not foggy, then the sailing race will be held and the lifesaving demonstration will go on," "If the sailing race is held, then the trophy will be awarded," and "The trophy was not awarded" imply the conclusion "It rained." You are required to show each step and give reasons for those steps before you come to the desired conclusion from the hypotheses.

Use mathematical induction to prove the inequality $n < 2^n$ for all positive integers n.

Why tableau method is important in the propositional logic? Draw the [2 + 6 = 8] tableau for the formula set

 $\Phi = \{(p \land \neg q) \rightarrow s, \neg q \lor \neg r, p \land t\}$

where \neg denotes the negation of a variable, \lor denotes the disjunction of variables, \land denotes the conjunction of variables and \rightarrow denotes the implication.

Differentiate between Deterministic Finite State Automata and Non-Deterministic Finite State Automata. Design a Finite State Automata that accepts precisely those strings over {a, b} that contain an even number of a's. Your design should include the proper definition of the finite-state automaton, transition table and the transition diagram.

Consider the regular grammar defined by $T=\{a, b\}$, $N=\{\sigma, C\}$ with productions

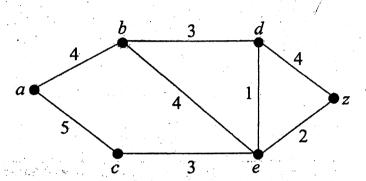
 $\sigma \rightarrow b\sigma$, $\sigma \rightarrow aC$, $C \rightarrow bC$, $C \rightarrow b$ and starting symbol σ .

Construct a Non-Deterministic Finite State Automata equivalent to the above given regular grammar and convert this into equivalent Deterministic Finite State Automata. [8]

[8]

[2+6 = 8]

[4 + 4 = 8]


Find all solutions of the recurrence relation $a_n = 7a_{n-1} - 16a_{n-2} + 12a_{n-3} + n4^n$ with initial condition $a_0 = -2$, $a_1 = 0$ and $a_2 = 5$.

Ø

7

9

Use Dijkstra's algorithm to find the length of the shortest path between the vertices a and z in the weighted graph displayed below.

8 Draw the figure for the complete bipartite graph $K_{4,5}$ and the cycle graph with 6 vertices (This is usually denoted by C₆). What is the chromatic number of the drawn complete bipartite graph $K_{4,5}$ and the cycle graph C₆.

Define a tree and discuss its various properties as well as applications of trees.

41

- 10 Write short notes on:
 - a) Eulerian graph
 - b) Max flow, min cut theorem
 - c) Planar and regular graphs

[8]

[8]

[2+2+2+2]

[1+2+4=7]

[3+3+3=9]